Gravitational Radiation Reaction for Inspiralling Binaries
Spin-spin effects to 3.5 post-Newtonian order

Han Wang

WUGRAV Gravity Group
McDonnell Center for the Space Sciences
Department of Physics
Washington University in St. Louis

16th Midwest Relativity Meeting
November 17, 2006
1 Introduction

2 Spin-spin R.R. : equations of motion to 3.5PN order

3 Applications

4 Conclusion and future work
Why study spin effects in binary systems

- Most astrophysical objects are spinning bodies and the orbital motion can be very different from the non-spinning case.
- Spin effects contribute to the gravitational waveform and the overall emission of energy and angular momentum.

- Including spin increases the computational burden and may effect the accuracy on source parameter estimation.
- It’s important to have a complete and reasonable accurate picture of the spin effects in the binary systems.
Why study spin effects in binary systems

- Most astrophysical objects are spinning bodies and the orbital motion can be very different from the non-spinning case.
- Spin effects contribute to the gravitational waveform and the overall emission of energy and angular momentum.

Including spin increases the computational burden and may effect the accuracy on source parameter estimation.
- It’s important to have a complete and reasonable accurate picture of the spin effects in the binary systems.
Why study spin effects in binary systems

- Most astrophysical objects are spinning bodies and the orbital motion can be very different from the non-spinning case.
- Spin effects contribute to the gravitational waveform and the overall emission of energy and angular momentum.

Including spin increases the computational burden and may effect the accuracy on source parameter estimation.

It's important to have a complete and reasonable accurate picture of the spin effects in the binary systems.
Why study spin effects in binary systems

- Most astrophysical objects are spinning bodies and the orbital motion can be very different from the non-spinning case.
- Spin effects contribute to the gravitational waveform and the overall emission of energy and angular momentum.

TABLE I. Number of GW inspiral cycles contributed by different PN orders for different NS-BH binaries. We assume $S = 0.3$ and an observation time $T_{\text{obs}} = 1$ yr. In the bottom section of the table, we normalize the number of cycles associated with the Brans-Dicke parameter to σ (first row) and to the Cassini bound $\omega_{\text{BD}} > \omega_{\text{Cassini}} = 4 \times 10^4$ (second row). We also show the initial and final GW frequencies, assuming an upper cutoff of 1.0 Hz for the LISA noise curve.

<table>
<thead>
<tr>
<th>PN order</th>
<th>$(1.4 + 400)M_\odot$</th>
<th>$(1.4 + 1000)M_\odot$</th>
<th>$(1.4 + 5000)M_\odot$</th>
<th>$(1.4 + 10^4)M_\odot$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{in}(Hz)</td>
<td>4.601×10^{-2}</td>
<td>3.658×10^{-2}</td>
<td>2.446×10^{-2}</td>
<td>2.057×10^{-2}</td>
</tr>
<tr>
<td>f_{fin}(Hz)</td>
<td>1.000</td>
<td>1.000</td>
<td>0.8792</td>
<td>0.4397</td>
</tr>
<tr>
<td>Newtonian</td>
<td>2 294 904</td>
<td>1 828 036</td>
<td>1 224 122</td>
<td>1 025 711</td>
</tr>
<tr>
<td>1PN</td>
<td>35 366</td>
<td>44 712</td>
<td>67 309</td>
<td>78 460</td>
</tr>
<tr>
<td>Tail</td>
<td>$-18 064$</td>
<td>$-29 081$</td>
<td>$-66 278$</td>
<td>$-89 793$</td>
</tr>
<tr>
<td>Spin-orbit</td>
<td>1437β</td>
<td>2314β</td>
<td>5274β</td>
<td>7145β</td>
</tr>
<tr>
<td>2PN</td>
<td>422</td>
<td>868</td>
<td>3016</td>
<td>4653</td>
</tr>
<tr>
<td>Spin-spin</td>
<td>-139σ</td>
<td>-288σ</td>
<td>-1001σ</td>
<td>-1545σ</td>
</tr>
<tr>
<td>Brans-Dicke</td>
<td>$-3 560 569 \sigma$</td>
<td>$-1 793 782 \sigma$</td>
<td>$-536 954 \sigma$</td>
<td>$-319 126 \sigma$</td>
</tr>
<tr>
<td>Brans-Dicke</td>
<td>$-89 \omega_{\text{Cassini}} / \omega_{\text{BD}}$</td>
<td>$-45 \omega_{\text{Cassini}} / \omega_{\text{BD}}$</td>
<td>$-13 \omega_{\text{Cassini}} / \omega_{\text{BD}}$</td>
<td>$-8.0 \omega_{\text{Cassini}} / \omega_{\text{BD}}$</td>
</tr>
</tbody>
</table>

- Including spin increases the computational burden and may effect the accuracy on source parameter estimation.
- It’s important to have a complete and reasonable accurate picture of the spin effects in the binary systems.
PN order counting rules for spinning binaries

- Post-Newtonian parameter $\epsilon \sim \frac{m}{r} \sim v^2$, $(G = c = 1)$

<table>
<thead>
<tr>
<th>For arbitrary rotating objects</th>
<th>Rapidly rotating compact objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{v} \sim O(v)$, $\bar{x} \sim O(r)$</td>
<td>$\bar{v} \sim O(1)$, $\bar{x} \sim O(m)$</td>
</tr>
<tr>
<td>$\Rightarrow S_A \sim O(mvr) \sim O(\epsilon^{3/2})r^2$</td>
<td>$\Rightarrow S_A \sim O(m^2) \sim O(\epsilon^2)r^2$</td>
</tr>
<tr>
<td>$S_1S_2 \sim O(\epsilon^3)r^4$</td>
<td>$S_1S_2 \sim O(\epsilon^4)r^4$</td>
</tr>
<tr>
<td>Leading order equation of motion with spin:</td>
<td>Leading order equation of motion with spin:</td>
</tr>
<tr>
<td>$a_{SO} \sim \frac{1}{m^2} S \sim \frac{m}{r} v^2 \rightarrow 1PN$</td>
<td>$a_{SO} \sim \frac{1}{m^2} S \sim \frac{m}{r} v^3 \rightarrow 1.5PN$</td>
</tr>
<tr>
<td>$a_{SS} \sim \frac{1}{mr^2} S^2 \sim \frac{m}{r^2} v^2 \rightarrow 1PN$</td>
<td>$a_{SS} \sim \frac{1}{mr^2} S^2 \sim \frac{m}{r^2} v^4 \rightarrow 2PN$</td>
</tr>
</tbody>
</table>

- For our calculation, we assume arbitrary rotating objects.
Post-Newtonian parameter $\epsilon \sim \frac{m}{r} \sim v^2$, ($G = c = 1$)

For arbitrary rotating objects

- $v \sim O(v)$, $\vec{x} \sim O(r)$
- $S_A \sim O(mvr) \sim O(\epsilon^{3/2})r^2$
- $S_1S_2 \sim O(\epsilon^3)r^4$

- Leading order equation of motion with spin:
 - $a_{SO} \sim \frac{v}{r^3}S \sim \frac{m}{r^2}v^2 \rightarrow 1PN$
 - $a_{SS} \sim \frac{1}{mr^4}S^2 \sim \frac{m}{r^2}v^2 \rightarrow 1PN$

For rapidly rotating compact objects

- $v \sim O(1)$, $\vec{x} \sim O(m)$
- $S_A \sim O(m^2) \sim O(\epsilon^2)r^2$
- $S_1S_2 \sim O(\epsilon^4)r^4$

- Leading order equation of motion with spin:
 - $a_{SO} \sim \frac{v}{r^3}S \sim \frac{m}{r^2}v^3 \rightarrow 1.5PN$
 - $a_{SS} \sim \frac{1}{mr^4}S^2 \sim \frac{m}{r^2}v^4 \rightarrow 2PN$

For our calculation, we assume arbitrary rotating objects.
PN order counting rules for spinning binaries

- Post-Newtonian parameter \(\epsilon \sim \frac{m}{r} \sim v^2 \), \((G = c = 1)\)

For arbitrary rotating objects

- \(\bar{v} \sim O(v), \bar{x} \sim O(r) \)
 \(\Rightarrow S_A \sim O(mvr) \sim O(\epsilon^{3/2})r^2\)
 \(S_1S_2 \sim O(\epsilon^3)r^4 \)

- Leading order equation of motion with spin:
 \(a_{SO} \sim \frac{\bar{v}}{r^3}S \sim \frac{m}{r^2}v^2 \rightarrow 1PN \)
 \(a_{SS} \sim \frac{1}{mr^4}S^2 \sim \frac{m}{r^2}v^2 \rightarrow 1PN \)

Rapidly rotating compact objects

- \(\bar{v} \sim O(1), \bar{x} \sim O(m) \)
 \(\Rightarrow S_A \sim O(m^2) \sim O(\epsilon^2)r^2\)
 \(S_1S_2 \sim O(\epsilon^4)r^4 \)

- Leading order equation of motion with spin:
 \(a_{SO} \sim \frac{\bar{v}}{r^3}S \sim \frac{m}{r^2}v^3 \rightarrow 1.5PN \)
 \(a_{SS} \sim \frac{1}{mr^4}S^2 \sim \frac{m}{r^2}v^4 \rightarrow 2PN \)

- For our calculation, we assume arbitrary rotating objects.
PN order counting rules for spinning binaries

- Post-Newtonian parameter $\epsilon \sim \frac{m}{r} \sim v^2$, $(G = c = 1)$

For arbitrary rotating objects

- $\bar{v} \sim O(v)$, $\bar{x} \sim O(r)$
 $\Rightarrow S_A \sim O(mvr) \sim O(\epsilon^{3/2})r^2$
 $S_1S_2 \sim O(\epsilon^3)r^4$

- Leading order equation of motion with spin:
 $a_{SO} \sim \frac{\bar{v}}{r^3}S \sim \frac{m}{r^2}v^2 \rightarrow 1\text{PN}$
 $a_{SS} \sim \frac{1}{mr^4}S^2 \sim \frac{m}{r^2}v^2 \rightarrow 1\text{PN}$

- For our calculation, we assume arbitrary rotating objects.

Rapidly rotating compact objects

- $\bar{v} \sim O(1)$, $\bar{x} \sim O(m)$
 $\Rightarrow S_A \sim O(m^2r) \sim O(\epsilon^2)r^2$
 $S_1S_2 \sim O(\epsilon^4)r^4$

- Leading order equation of motion with spin:
 $a_{SO} \sim \frac{\bar{v}}{r^3}S \sim \frac{m}{r^2}v^3 \rightarrow 1.5\text{PN}$
 $a_{SS} \sim \frac{1}{mr^4}S^2 \sim \frac{m}{r^2}v^4 \rightarrow 2\text{PN}$
Introduction
Spin-spin R.R.: equations of motion to 3.5PN order
Applications
Conclusion and future work

Leading order spin-spin R.R. is 3.5PN

- Equation of motion in post-Newtonian language:
 \[a = a_N(PM) + a_{1PN}(PM, SO, SS) + a_{2PN}(PM, SO, SS) + a_{2.5PN}(PM)
 + a_{3PN}(PM, SO, SS) + a_{3.5PN}(PM, SO, SS) + \ldots \]

- No radiation reaction in N, 1PN, 2PN, 3PN EOM.
- No spin in quadrupole formula \(\Rightarrow \) No spin in 2.5PN order R.R.
- Leading order R.R. containing spin: 3.5PN order
 3.5PN spin-orbit R.R. was calculated by Will in 2005 (Phys.Rev. D71 084027)
Leading order spin-spin R.R. is 3.5PN

- Equation of motion in post-Newtonian language:
 \[a = a_N(PM) + a_{1PN}(PM, SO, SS) + a_{2PN}(PM, SO, SS) + a_{2.5PN}(PM) + a_{3PN}(PM, SO, SS) + a_{3.5PN}(PM, SO, SS) + \ldots \]

- No radiation reaction in N, 1PN, 2PN, 3PN EOM.

- No spin in quadrupole formula \(\Rightarrow \) No spin in 2.5PN order R.R.

- Leading order R.R. containing spin: 3.5PN order

 3.5PN spin-orbit R.R. was calculated by Will in 2005 (Phys.Rev. D71 084027)
Leading order spin-spin R.R. is 3.5PN

- Equation of motion in post-Newtonian language:
 \[\mathbf{a} = a_N(\text{PM}) + a_{1\text{PN}}(\text{PM}, \text{SO, SS}) + a_{2\text{PN}}(\text{PM}, \text{SO, SS}) + a_{2.5\text{PN}}(\text{PM}) + a_{3\text{PN}}(\text{PM}, \text{SO, SS}) + a_{3.5\text{PN}}(\text{PM, SO, SS}) + \ldots \]

- No radiation reaction in N, 1PN, 2PN, 3PN EOM.

- No spin in quadrupole formula \(\Rightarrow\) No spin in 2.5PN order R.R.

- Leading order R.R. containing spin: 3.5PN order

 3.5PN spin-orbit R.R. was calculated by Will in 2005 (Phys.Rev. D71 084027)
Equation of motion in post-Newtonian language:
\[a = a_N(\text{PM}) + a_{1PN}(\text{PM}, SO, SS) + a_{2PN}(\text{PM}, SO, SS) + a_{2.5PN}(\text{PM}) \]
\[+ a_{3PN}(\text{PM}, SO, SS) + a_{3.5PN}(\text{PM}, SO, SS) + \ldots \]

No radiation reaction in N, 1PN, 2PN, 3PN EOM.
No spin in quadrupole formula \(\Rightarrow\) No spin in 2.5PN order R.R.
Leading order R.R. containing spin: \textit{3.5PN order}

3.5PN spin-orbit R.R. was calculated by Will in 2005 (Phys.Rev. D71 084027)
Calculate the spin-spin effects

- Pati & Will (2002) worked out the EOM up to 3.5PN order in terms of $I^{ij\cdots}$, $J^{ij\cdots}$, $U(x)$, $X(x)$, \ldots.
- Assume the objects are perfect fluid balls.
- Define the ordinary and proper spin:
 \[
 S^i_A = \epsilon^{ijk} \int_A \rho^* \bar{x}^j \bar{v}^k d^3x,
 \]
 where $\bar{v}^i = v^i - v'_A$, $\bar{x}^i = x^i - x'_A$
 \[
 S^i_A \equiv S^i_A (1 + \frac{1}{2} v_A^2 + 3 \frac{m_B}{r}) - \frac{1}{2} [v_A \times (v_A \times S_A)]^i - S^i_A \mathcal{T}^{ij} + S^i_A \mathcal{T}^{ij}.
 \]
 Using expansion parameters $\bar{x}, \bar{x}', \bar{v}, \bar{v}'$, we expand EOM w.r.t. center of each bodies, only keep terms proportional to $(\rho^* \bar{x}\bar{v})(\rho^* \bar{x}'\bar{v}')$.
- Spin-spin R.R. (3.5PN SS EOM) comes from (1) $a^{i}_{3.5PN}$, (2) $a^{i}_{1PN} + a^{i}_{2.5PN}$, (3) 2.5PN part in S^i.
- We can also calculate the equations of spin to this order as
 \[
 \dot{S}^i_A = \epsilon^{ijk} \int_A \rho^* \bar{x}^j a^k_{3.5PN} d^3x
 \]
The results

\[a_{3.5PN-SS}^i = \frac{1}{30r^n} \left\{ -1229m (v \cdot \mathbf{S}_2) + 1317mr (n \cdot \mathbf{S}_2) - 1125r^2 (v \cdot \mathbf{S}_2)r \\
+ 81 (v \cdot \mathbf{S}_2) r^2 + 1155r^3 (n \cdot \mathbf{S}_2) r + 225r (n \cdot \mathbf{S}_2) r^2 \right\} S_i^i \\
+ \left[-1229m (v \cdot \mathbf{S}_1) + 1317mr (n \cdot \mathbf{S}_1) - 1125r^2 (v \cdot \mathbf{S}_1)r \\
+ 81 (v \cdot \mathbf{S}_1) r^2 + 1155r^3 (n \cdot \mathbf{S}_1) r + 225r (n \cdot \mathbf{S}_1) r^2 \right\} S_i^i \\
+ \left[-570m (S_1 \cdot S_2) + 4788m (n \cdot S_1)(n \cdot S_2) - 5850 (S_1 \cdot S_2)r^2r \\
+ 1026 (S_1 \cdot S_2) r^3r + 2880 (v \cdot S_1) (S_1 \cdot S_2)r \\
+ 41580r^2 (n \cdot S_1)(n \cdot S_2)r - 13140 (n \cdot S_1)(v \cdot S_2)r \\
- 13140 (v \cdot S_1)(n \cdot S_2)r - 5220 (n \cdot S_1)(n \cdot S_2)r^2 \right\} v_i^i \\
+ \left[1809m (S_1 \cdot S_2) r - 11766m (n \cdot S_1)(n \cdot S_2)r \\
+ 2607m (n \cdot S_1)(v \cdot S_2) + 2607m (n \cdot S_1)(v \cdot S_2) \\
+ 8510 (S_1 \cdot S_2) r^3r - 2970 (S_1 \cdot S_2) v^3r \\
- 17980 (n \cdot S_1)(n \cdot S_2)r^3r + 30870 (n \cdot S_1)(v \cdot S_2)r^3r \\
+ 30870 (v \cdot S_1)(n \cdot S_2) N v^2r - 10080 (v \cdot S_1)(v \cdot S_2)r \\
+ 21420 (n \cdot S_1)(n \cdot S_2)r v^2r - 3840 (v \cdot S_2)(n \cdot S_1)r v^2 \\
- 3590 (v \cdot S_1)(n \cdot S_2)r v^2 \\
- 720m [(n \times S_1) \cdot v](n \times S_2)v - 720m [(n \times S_2) \cdot v](n \times S_1)v \right\} \]

\[S_i^i = \frac{\mu}{r^4} \left\{ (v \times S_1)^i \left[\frac{61}{5} \frac{n \cdot S_2}{r} + 3r^2 (n \cdot S_2) - \frac{3}{5} (n \cdot S_2)v^2 \right] \\
+ \frac{148}{15} m (v \cdot S_2) - \frac{33}{r} m (n \cdot S_2) - 9 (n \cdot S_2)v^2 \right\} \\
+ 21 (n \cdot S_2)r^3 - 12r^2 (v \cdot S_2) + \frac{12}{5} v^2 (v \cdot S_2) \]

- The potential form (Pati & Will 2002)
- SO terms (Will 2005)
- SS terms (Wang & Will 2006)
Near zone orbital energy and total angular momentum loss due to the leading order spin-spin gravitational radiation:

\[
\dot{E}_N^{(SS)} = \mu (\mathbf{v} \cdot \mathbf{a}_{3.5\text{PN} - SS}) \\
\dot{J}_N^{(SS)} = \dot{L}_N^{(SS)} + \dot{S}_N^{(SS)} \\
\dot{L}_N^{(SS)} = \mu (\mathbf{x} \times \mathbf{a}_{3.5\text{PN} - SS})
\]

Comparing \(\dot{E}_N^{(SS)}\) and \(\dot{J}_N^{(SS)}\), with the radiation zone energy (angular momentum) flux (Kidder 1995), we can show the difference is a total time derivative.

\[\Rightarrow \text{Pure gauge effect, re-define the near zone energy(angular momentum).}\]

- Near zone energy (angular momentum) loss and radiation zone flux balance. ✓
- \(\dot{S}\) in this order is pure precession.
Near zone orbital energy and total angular momentum loss due to the leading order spin-spin gravitational radiation:

\[
\dot{E}_N^{(SS)} = \mu (\mathbf{v} \cdot \mathbf{a}_{3.5\text{PN}}^{\text{SS}})
\]

\[
\dot{J}_N^{(SS)} = \dot{L}_N^{(SS)} + \dot{S}_N^{(SS)} \quad \dot{L}_N^{(SS)} = \mu (\mathbf{x} \times \mathbf{a}_{3.5\text{PN}}^{\text{SS}})
\]

Comparing \(\dot{E}_N^{(SS)}\), \(\dot{J}_N^{(SS)}\), with the radiation zone energy (angular momentum) flux (Kidder 1995), we can show the difference is a total time derivative.

\(\Rightarrow\) Pure gauge effect, re-define the near zone energy (angular momentum).

Near zone energy (angular momentum) loss and radiation zone flux balance. ✓

\(\dot{S}\) in this order is pure precession.
Energy and angular momentum balance

Near zone orbital energy and total angular momentum loss due to the leading order spin-spin gravitational radiation:

$$\dot{E}_N(\text{SS}) = \mu (\mathbf{v} \cdot a_{3.5\text{PN}-\text{SS}})$$

$$\dot{J}_N(\text{SS}) = \dot{L}_N(\text{SS}) + \dot{S}_N(\text{SS})$$

$$\dot{L}_N(\text{SS}) = \mu (\mathbf{x} \times a_{3.5\text{PN}-\text{SS}})$$

Comparing $\dot{E}_N(\text{SS})$, $\dot{J}_N(\text{SS})$, with the radiation zone energy (angular momentum) flux (Kidder 1995), we can show the difference is a total time derivative.

\Rightarrow Pure gauge effect, re-define the near zone energy (angular momentum).

Near zone energy (angular momentum) loss and radiation zone flux balance. ✓

\dot{S} in this order is pure precession.
Energy and angular momentum balance

- Near zone orbital energy and total angular momentum loss due to the leading order spin-spin gravitational radiation:
 \[\dot{E}_N(SS) = \mu (\mathbf{v} \cdot a_{3.5PN-SS}) \]
 \[\dot{J}_N(SS) = \dot{L}_N(SS) + \dot{S}_N(SS) \quad \dot{L}_N(SS) = \mu (\mathbf{x} \times a_{3.5PN-SS}) \]

- Comparing \(\dot{E}_N(SS) \), \(\dot{J}_N(SS) \), with the radiation zone energy (angular momentum) flux (Kidder 1995), we can show the difference is a total time derivative.
 \[\Rightarrow \text{Pure gauge effect, re-define the near zone energy(angular momentum).} \]

- Near zone energy (angular momentum) loss and radiation zone flux balance. ✓

- \(\dot{S} \) in this order is pure precession.
Conclusion

- We calculated the 3.5 post-Newtonian order spin-spin radiation reaction and equation of spin for inspiralling binary systems.
- Using the our result, we calculated the near zone energy and angular momentum loss, which agrees with the radiation zone flux formula.
- Because of the spin-spin coupling, \(\dot{\mathbf{S}} \) in this order is no longer a total time derivative and it has contribution to the spin precession.

Possible future works

- Detail investigation of the gauge freedom in the near zone.
- Spin-spin contribution to the 2PN equation of motion.
- High order spin-orbit and spin-spin contribution to the waveform.
Conclusion

- We calculated the 3.5 post-Newtonian order spin-spin radiation reaction and equation of spin for inspiralling binary systems.

- Using the our result, we calculated the near zone energy and angular momentum loss, which agrees with the radiation zone flux formula.

- Because of the spin-spin coupling, \dot{S} in this order is no longer a total time derivative and it has contribution to the spin precession.

Possible future works

- Detail investigation of the gauge freedom in the near zone.
- Spin-spin contribution to the 2PN equation of motion.
- High order spin-orbit and spin-spin contribution to the waveform.
ACKNOWLEDGMENTS

Left to right row 1: Thomas Mitchell, Edwin Evans, Jian Tao
Row 2: Emanuele Berti, Jing Zeng, Han Wang, Randy Wolfmeyer, Hui-Min Zhang, Ke-Jian Jin
Row 3: Sai Iyer, Clifford Will, Wai-Mo Suen, Vitor Cardoso (Now in Univ. Mississippi)
Missing from the picture: Mew-bing Wan, James Shifflett, Peter Ronhovde