A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric
— Black Hole Rigidity in Higher Dimensions —

Akihiro Ishibashi

Enrico Fermi Institute
University of Chicago

gr-qc/0605106 — S. Hollands, Al, & R.M. Wald

11/17/2006
Outline

- Introduction/Motivation
- Rigidity Theorem
- Key Issues & Sketch of Proof
- Remarks
Why Higher Dimensions?

- required in most attempts to unify the forces in Nature
 Kalzu-Klein, Supergravity, Superstring theories

- Braneworld / Large extra-dimensions phenomenology
 \(D > 4 \) BHs and Hawking radiation at LHC

- help understand 4-dimensional gravity
 HD BH solutions play an important role

Focus:
Stationary Black Holes in \(D > 4 \) General Relativity
- with no compactified dimensions
Asymptotically flat, Stationary 4\(D\) BHs

- **Exact Solutions** — (Kerr metric)
- **Stability** — (Stable \(\Rightarrow\) final state of collapse)
- **Topology** — (Event Horizon \(\approx 2\)-sphere \(\times\) \(\mathbb{R}\))
- **Symmetry** — (static, or axisymmetric)
- **Uniqueness** — (Vacuum \(\Rightarrow\) Kerr-family)
- **BH Mechanics** — (Thermodynamics)

Which properties of 4\(D\) BHs are extended to \(D > 4\)?
Recent Results of $D > 4$ BHs

- **Exact Solutions** — more variety
 Rotating Holes [Myers & Perry], Rotating Rings [Emparan & Reall]

- **Stability** — partial results
 Static vacuum \Rightarrow stable, [Al & Kodama], Rotating holes \Rightarrow not fully studied yet

- **Topology** — more variety
 Some restrictions, e.g., [Galloway & Shoen]

- **Symmetry / “Rigidity”** — This talk

- **Uniqueness** — non-unique
 holes and ring w/ the same (J, M)
Black Hole “Rigidity”

Let \((M, g)\) be a \(D \geq 4\), analytic, asymptotically flat, stationary vacuum solution to Einstein’s equation. Assume event horizon \(\mathcal{H}\) is analytic, non-degenerate, and topologically \(\mathbb{R} \times \Sigma\) with \(\Sigma\) being compact, connected.

Theorem 1: There exists a Killing field \(K^a\) in entire D.O.C. such that \(K^a\) is normal to \(\mathcal{H}\) and commutes with the stationary Killing vector filed \(t^a\) \(\Rightarrow\) “Killing horizon”

Theorem 2: If \(t^a\) is not normal to \(\mathcal{H}\), i.e., \(t^a \neq K^a\), then there exist mutually commuting Killing vector fields \(\varphi^a_{(1)}, \cdots, \varphi^a_{(j)}\) \((j \geq 1)\) with period \(2\pi\) and \(t^a = K^a + \Omega_{(1)}\varphi^a_{(1)} + \cdots + \Omega_{(j)}\varphi^a_{(j)}\), where \(\Omega_{(j)}\)’s constants. \(\Rightarrow\) “Axisymmetry” (“Rigid-rotation”)
Why “Rigidity” interesting?

- relates “global” (even horizon) to “local” (Killing horizon)
- rotating hole ⇒ extra-(axial) symmetry
- foundation of BH Thermodynamics
 (Constancy of surface gravity ⇒ Oth Law)
- a necessary step toward “Uniqueness” in $4D$ case

However, Hawking’s proof (1972) for $4D$ case relies heavily on the fact that event horizon cross-section Σ is topologically 2-sphere ⇒ Generalization to $D > 4$ is highly non-trivial

Goal: Present a proof of BH Rigidity Theorem in $D \geq 4$ with No Assumption on Topology of Event Horizon
Brief Sketch of Proof of Theorem 1

Step 1
Construct a “candidate” Killing field K^a on \mathcal{H} which satisfies

- $K^a K_a = 0$ and $\mathcal{L}_t K^a = 0$ on \mathcal{H},
- $\alpha = \text{const.} \ (K^c \nabla_c K^a = \alpha K^a)$ on \mathcal{H},
- $\mathcal{L}_K g_{ab} = 0$ on \mathcal{H},

Try this one! $K^a = t^a - s^a$

Step 2
- Show Taylor expansion,
 $\partial^m (\mathcal{L}_K g_{ab}) / \partial \lambda^m = 0$, at \mathcal{H}
- Extend K^a to the whole spacetime by invoking analyticity.
However, there is **No reason why** \(\alpha \) **need be constant.**

— wish to find “correct” \(\tilde{K}^a \) with \(\tilde{\alpha} = \text{const.} =: \kappa \) on \(\mathcal{H} \) by choosing a new, “correct” foliation \(\tilde{\Sigma} \).

Both \(K^a \) and \(\tilde{K}^a \) are null,

\[
\tilde{K}^a = f(x) \ K^a
\]

Task: Find a solution to Equation for coordinate transformation from trial \(\Sigma \) to correct \(\tilde{\Sigma} \):

\[
-\mathcal{L}_s f(x) + \alpha(x) \ f(x) = \kappa
\]

\[
K^a + s^a = t^a = \tilde{K}^a + \tilde{s}^a
\]
Find correct foliation $\tilde{\Sigma}$ 4D case

In 4D, horizon cross-section Σ is 2-sphere, and therefore the orbits of s^a must be closed.

There is a discrete isometry “Γ” which maps each null generator into itself.

Discrete isometry, Γ, helps

- to define the surface gravity as
 \[\kappa \equiv P^{-1} \int_0^P \alpha[\phi_s(x)] \, ds, \]
- to find correct foliation $\tilde{\Sigma}$
- to show Step 2
Find correct foliation $\tilde{\Sigma} \quad D > 4$ case:

No reason that the isometry s^a need have closed orbits on Σ.
\Rightarrow in general, there is No discrete isometry Γ.

e.g., 5D Myers-Perry BH w/ 2-rotations $\Omega(1), \Omega(2)$:

$\Sigma \approx S^3, \quad t^a = K^a + s^a$

$s^a = \Omega(1)\varphi^a(1) + \Omega(2)\varphi^a(2)$

Each rotation Killing vector φ^a has closed orbits but s^a does not if $\Omega(1)$ and $\Omega(2)$ are incommensurable.
Solution to $D > 4$ case:

(i) When s^a has closed orbits on $\Sigma \Rightarrow$ we are done!

\[
\kappa = \frac{1}{P} \int_0^P \alpha[\phi_s(x)] ds \quad P: \text{period} \quad \phi_s: \text{isom. on } \Sigma \text{ by } s^a
\]

(ii) When s^a has No closed orbits \Rightarrow Use Ergodic Theorem!

\[
\kappa = \lim_{T \to \infty} \frac{1}{T} \int_0^T \alpha[\phi_s(x)] ds = \frac{1}{\text{Area}(\Sigma)} \int_{\Sigma} \alpha(x) d\Sigma
\]

“time-average” “space-average”

- can show that the limit “κ” exists and is constant
- can find well-behaved transformation $\Sigma \to \tilde{\Sigma}$
Remarks

— can apply to any “horizon” defined as the “boundary” of causal past of a complete timelike orbits of t^a, e.g., cosmological constant.

— apply to Einstein-Λ-Maxwell system

— can remove analyticity assumption for the BH interior

When t^a is normal to H ($t^a = K^a$), ⇒ black hole is static.